Highest Common Factor of 5197, 2181 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5197, 2181 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 5197, 2181 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5197, 2181 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5197, 2181 is 1.

HCF(5197, 2181) = 1

HCF of 5197, 2181 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5197, 2181 is 1.

Highest Common Factor of 5197,2181 using Euclid's algorithm

Highest Common Factor of 5197,2181 is 1

Step 1: Since 5197 > 2181, we apply the division lemma to 5197 and 2181, to get

5197 = 2181 x 2 + 835

Step 2: Since the reminder 2181 ≠ 0, we apply division lemma to 835 and 2181, to get

2181 = 835 x 2 + 511

Step 3: We consider the new divisor 835 and the new remainder 511, and apply the division lemma to get

835 = 511 x 1 + 324

We consider the new divisor 511 and the new remainder 324,and apply the division lemma to get

511 = 324 x 1 + 187

We consider the new divisor 324 and the new remainder 187,and apply the division lemma to get

324 = 187 x 1 + 137

We consider the new divisor 187 and the new remainder 137,and apply the division lemma to get

187 = 137 x 1 + 50

We consider the new divisor 137 and the new remainder 50,and apply the division lemma to get

137 = 50 x 2 + 37

We consider the new divisor 50 and the new remainder 37,and apply the division lemma to get

50 = 37 x 1 + 13

We consider the new divisor 37 and the new remainder 13,and apply the division lemma to get

37 = 13 x 2 + 11

We consider the new divisor 13 and the new remainder 11,and apply the division lemma to get

13 = 11 x 1 + 2

We consider the new divisor 11 and the new remainder 2,and apply the division lemma to get

11 = 2 x 5 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5197 and 2181 is 1

Notice that 1 = HCF(2,1) = HCF(11,2) = HCF(13,11) = HCF(37,13) = HCF(50,37) = HCF(137,50) = HCF(187,137) = HCF(324,187) = HCF(511,324) = HCF(835,511) = HCF(2181,835) = HCF(5197,2181) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5197, 2181 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5197, 2181?

Answer: HCF of 5197, 2181 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5197, 2181 using Euclid's Algorithm?

Answer: For arbitrary numbers 5197, 2181 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.