Highest Common Factor of 520, 709, 145 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 520, 709, 145 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 520, 709, 145 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 520, 709, 145 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 520, 709, 145 is 1.

HCF(520, 709, 145) = 1

HCF of 520, 709, 145 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 520, 709, 145 is 1.

Highest Common Factor of 520,709,145 using Euclid's algorithm

Highest Common Factor of 520,709,145 is 1

Step 1: Since 709 > 520, we apply the division lemma to 709 and 520, to get

709 = 520 x 1 + 189

Step 2: Since the reminder 520 ≠ 0, we apply division lemma to 189 and 520, to get

520 = 189 x 2 + 142

Step 3: We consider the new divisor 189 and the new remainder 142, and apply the division lemma to get

189 = 142 x 1 + 47

We consider the new divisor 142 and the new remainder 47,and apply the division lemma to get

142 = 47 x 3 + 1

We consider the new divisor 47 and the new remainder 1,and apply the division lemma to get

47 = 1 x 47 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 520 and 709 is 1

Notice that 1 = HCF(47,1) = HCF(142,47) = HCF(189,142) = HCF(520,189) = HCF(709,520) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 145 > 1, we apply the division lemma to 145 and 1, to get

145 = 1 x 145 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 145 is 1

Notice that 1 = HCF(145,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 520, 709, 145 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 520, 709, 145?

Answer: HCF of 520, 709, 145 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 520, 709, 145 using Euclid's Algorithm?

Answer: For arbitrary numbers 520, 709, 145 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.