Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 520, 856 i.e. 8 the largest integer that leaves a remainder zero for all numbers.
HCF of 520, 856 is 8 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 520, 856 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 520, 856 is 8.
HCF(520, 856) = 8
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 520, 856 is 8.
Step 1: Since 856 > 520, we apply the division lemma to 856 and 520, to get
856 = 520 x 1 + 336
Step 2: Since the reminder 520 ≠ 0, we apply division lemma to 336 and 520, to get
520 = 336 x 1 + 184
Step 3: We consider the new divisor 336 and the new remainder 184, and apply the division lemma to get
336 = 184 x 1 + 152
We consider the new divisor 184 and the new remainder 152,and apply the division lemma to get
184 = 152 x 1 + 32
We consider the new divisor 152 and the new remainder 32,and apply the division lemma to get
152 = 32 x 4 + 24
We consider the new divisor 32 and the new remainder 24,and apply the division lemma to get
32 = 24 x 1 + 8
We consider the new divisor 24 and the new remainder 8,and apply the division lemma to get
24 = 8 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 8, the HCF of 520 and 856 is 8
Notice that 8 = HCF(24,8) = HCF(32,24) = HCF(152,32) = HCF(184,152) = HCF(336,184) = HCF(520,336) = HCF(856,520) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 520, 856?
Answer: HCF of 520, 856 is 8 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 520, 856 using Euclid's Algorithm?
Answer: For arbitrary numbers 520, 856 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.