Highest Common Factor of 522, 899, 184 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 522, 899, 184 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 522, 899, 184 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 522, 899, 184 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 522, 899, 184 is 1.

HCF(522, 899, 184) = 1

HCF of 522, 899, 184 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 522, 899, 184 is 1.

Highest Common Factor of 522,899,184 using Euclid's algorithm

Highest Common Factor of 522,899,184 is 1

Step 1: Since 899 > 522, we apply the division lemma to 899 and 522, to get

899 = 522 x 1 + 377

Step 2: Since the reminder 522 ≠ 0, we apply division lemma to 377 and 522, to get

522 = 377 x 1 + 145

Step 3: We consider the new divisor 377 and the new remainder 145, and apply the division lemma to get

377 = 145 x 2 + 87

We consider the new divisor 145 and the new remainder 87,and apply the division lemma to get

145 = 87 x 1 + 58

We consider the new divisor 87 and the new remainder 58,and apply the division lemma to get

87 = 58 x 1 + 29

We consider the new divisor 58 and the new remainder 29,and apply the division lemma to get

58 = 29 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 29, the HCF of 522 and 899 is 29

Notice that 29 = HCF(58,29) = HCF(87,58) = HCF(145,87) = HCF(377,145) = HCF(522,377) = HCF(899,522) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 184 > 29, we apply the division lemma to 184 and 29, to get

184 = 29 x 6 + 10

Step 2: Since the reminder 29 ≠ 0, we apply division lemma to 10 and 29, to get

29 = 10 x 2 + 9

Step 3: We consider the new divisor 10 and the new remainder 9, and apply the division lemma to get

10 = 9 x 1 + 1

We consider the new divisor 9 and the new remainder 1, and apply the division lemma to get

9 = 1 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 29 and 184 is 1

Notice that 1 = HCF(9,1) = HCF(10,9) = HCF(29,10) = HCF(184,29) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 522, 899, 184 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 522, 899, 184?

Answer: HCF of 522, 899, 184 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 522, 899, 184 using Euclid's Algorithm?

Answer: For arbitrary numbers 522, 899, 184 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.