Highest Common Factor of 523, 828, 329 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 523, 828, 329 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 523, 828, 329 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 523, 828, 329 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 523, 828, 329 is 1.

HCF(523, 828, 329) = 1

HCF of 523, 828, 329 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 523, 828, 329 is 1.

Highest Common Factor of 523,828,329 using Euclid's algorithm

Highest Common Factor of 523,828,329 is 1

Step 1: Since 828 > 523, we apply the division lemma to 828 and 523, to get

828 = 523 x 1 + 305

Step 2: Since the reminder 523 ≠ 0, we apply division lemma to 305 and 523, to get

523 = 305 x 1 + 218

Step 3: We consider the new divisor 305 and the new remainder 218, and apply the division lemma to get

305 = 218 x 1 + 87

We consider the new divisor 218 and the new remainder 87,and apply the division lemma to get

218 = 87 x 2 + 44

We consider the new divisor 87 and the new remainder 44,and apply the division lemma to get

87 = 44 x 1 + 43

We consider the new divisor 44 and the new remainder 43,and apply the division lemma to get

44 = 43 x 1 + 1

We consider the new divisor 43 and the new remainder 1,and apply the division lemma to get

43 = 1 x 43 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 523 and 828 is 1

Notice that 1 = HCF(43,1) = HCF(44,43) = HCF(87,44) = HCF(218,87) = HCF(305,218) = HCF(523,305) = HCF(828,523) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 329 > 1, we apply the division lemma to 329 and 1, to get

329 = 1 x 329 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 329 is 1

Notice that 1 = HCF(329,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 523, 828, 329 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 523, 828, 329?

Answer: HCF of 523, 828, 329 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 523, 828, 329 using Euclid's Algorithm?

Answer: For arbitrary numbers 523, 828, 329 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.