Highest Common Factor of 524, 801, 646, 761 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 524, 801, 646, 761 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 524, 801, 646, 761 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 524, 801, 646, 761 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 524, 801, 646, 761 is 1.

HCF(524, 801, 646, 761) = 1

HCF of 524, 801, 646, 761 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 524, 801, 646, 761 is 1.

Highest Common Factor of 524,801,646,761 using Euclid's algorithm

Highest Common Factor of 524,801,646,761 is 1

Step 1: Since 801 > 524, we apply the division lemma to 801 and 524, to get

801 = 524 x 1 + 277

Step 2: Since the reminder 524 ≠ 0, we apply division lemma to 277 and 524, to get

524 = 277 x 1 + 247

Step 3: We consider the new divisor 277 and the new remainder 247, and apply the division lemma to get

277 = 247 x 1 + 30

We consider the new divisor 247 and the new remainder 30,and apply the division lemma to get

247 = 30 x 8 + 7

We consider the new divisor 30 and the new remainder 7,and apply the division lemma to get

30 = 7 x 4 + 2

We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get

7 = 2 x 3 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 524 and 801 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(30,7) = HCF(247,30) = HCF(277,247) = HCF(524,277) = HCF(801,524) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 646 > 1, we apply the division lemma to 646 and 1, to get

646 = 1 x 646 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 646 is 1

Notice that 1 = HCF(646,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 761 > 1, we apply the division lemma to 761 and 1, to get

761 = 1 x 761 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 761 is 1

Notice that 1 = HCF(761,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 524, 801, 646, 761 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 524, 801, 646, 761?

Answer: HCF of 524, 801, 646, 761 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 524, 801, 646, 761 using Euclid's Algorithm?

Answer: For arbitrary numbers 524, 801, 646, 761 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.