Highest Common Factor of 5245, 1963 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5245, 1963 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 5245, 1963 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5245, 1963 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5245, 1963 is 1.

HCF(5245, 1963) = 1

HCF of 5245, 1963 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5245, 1963 is 1.

Highest Common Factor of 5245,1963 using Euclid's algorithm

Highest Common Factor of 5245,1963 is 1

Step 1: Since 5245 > 1963, we apply the division lemma to 5245 and 1963, to get

5245 = 1963 x 2 + 1319

Step 2: Since the reminder 1963 ≠ 0, we apply division lemma to 1319 and 1963, to get

1963 = 1319 x 1 + 644

Step 3: We consider the new divisor 1319 and the new remainder 644, and apply the division lemma to get

1319 = 644 x 2 + 31

We consider the new divisor 644 and the new remainder 31,and apply the division lemma to get

644 = 31 x 20 + 24

We consider the new divisor 31 and the new remainder 24,and apply the division lemma to get

31 = 24 x 1 + 7

We consider the new divisor 24 and the new remainder 7,and apply the division lemma to get

24 = 7 x 3 + 3

We consider the new divisor 7 and the new remainder 3,and apply the division lemma to get

7 = 3 x 2 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5245 and 1963 is 1

Notice that 1 = HCF(3,1) = HCF(7,3) = HCF(24,7) = HCF(31,24) = HCF(644,31) = HCF(1319,644) = HCF(1963,1319) = HCF(5245,1963) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5245, 1963 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5245, 1963?

Answer: HCF of 5245, 1963 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5245, 1963 using Euclid's Algorithm?

Answer: For arbitrary numbers 5245, 1963 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.