Highest Common Factor of 5254, 4357 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5254, 4357 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 5254, 4357 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5254, 4357 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5254, 4357 is 1.

HCF(5254, 4357) = 1

HCF of 5254, 4357 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5254, 4357 is 1.

Highest Common Factor of 5254,4357 using Euclid's algorithm

Highest Common Factor of 5254,4357 is 1

Step 1: Since 5254 > 4357, we apply the division lemma to 5254 and 4357, to get

5254 = 4357 x 1 + 897

Step 2: Since the reminder 4357 ≠ 0, we apply division lemma to 897 and 4357, to get

4357 = 897 x 4 + 769

Step 3: We consider the new divisor 897 and the new remainder 769, and apply the division lemma to get

897 = 769 x 1 + 128

We consider the new divisor 769 and the new remainder 128,and apply the division lemma to get

769 = 128 x 6 + 1

We consider the new divisor 128 and the new remainder 1,and apply the division lemma to get

128 = 1 x 128 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5254 and 4357 is 1

Notice that 1 = HCF(128,1) = HCF(769,128) = HCF(897,769) = HCF(4357,897) = HCF(5254,4357) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5254, 4357 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5254, 4357?

Answer: HCF of 5254, 4357 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5254, 4357 using Euclid's Algorithm?

Answer: For arbitrary numbers 5254, 4357 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.