Highest Common Factor of 5263, 8625 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5263, 8625 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 5263, 8625 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5263, 8625 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5263, 8625 is 1.

HCF(5263, 8625) = 1

HCF of 5263, 8625 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5263, 8625 is 1.

Highest Common Factor of 5263,8625 using Euclid's algorithm

Highest Common Factor of 5263,8625 is 1

Step 1: Since 8625 > 5263, we apply the division lemma to 8625 and 5263, to get

8625 = 5263 x 1 + 3362

Step 2: Since the reminder 5263 ≠ 0, we apply division lemma to 3362 and 5263, to get

5263 = 3362 x 1 + 1901

Step 3: We consider the new divisor 3362 and the new remainder 1901, and apply the division lemma to get

3362 = 1901 x 1 + 1461

We consider the new divisor 1901 and the new remainder 1461,and apply the division lemma to get

1901 = 1461 x 1 + 440

We consider the new divisor 1461 and the new remainder 440,and apply the division lemma to get

1461 = 440 x 3 + 141

We consider the new divisor 440 and the new remainder 141,and apply the division lemma to get

440 = 141 x 3 + 17

We consider the new divisor 141 and the new remainder 17,and apply the division lemma to get

141 = 17 x 8 + 5

We consider the new divisor 17 and the new remainder 5,and apply the division lemma to get

17 = 5 x 3 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5263 and 8625 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(17,5) = HCF(141,17) = HCF(440,141) = HCF(1461,440) = HCF(1901,1461) = HCF(3362,1901) = HCF(5263,3362) = HCF(8625,5263) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5263, 8625 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5263, 8625?

Answer: HCF of 5263, 8625 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5263, 8625 using Euclid's Algorithm?

Answer: For arbitrary numbers 5263, 8625 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.