Highest Common Factor of 527, 248, 445, 966 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 527, 248, 445, 966 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 527, 248, 445, 966 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 527, 248, 445, 966 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 527, 248, 445, 966 is 1.

HCF(527, 248, 445, 966) = 1

HCF of 527, 248, 445, 966 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 527, 248, 445, 966 is 1.

Highest Common Factor of 527,248,445,966 using Euclid's algorithm

Highest Common Factor of 527,248,445,966 is 1

Step 1: Since 527 > 248, we apply the division lemma to 527 and 248, to get

527 = 248 x 2 + 31

Step 2: Since the reminder 248 ≠ 0, we apply division lemma to 31 and 248, to get

248 = 31 x 8 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 31, the HCF of 527 and 248 is 31

Notice that 31 = HCF(248,31) = HCF(527,248) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 445 > 31, we apply the division lemma to 445 and 31, to get

445 = 31 x 14 + 11

Step 2: Since the reminder 31 ≠ 0, we apply division lemma to 11 and 31, to get

31 = 11 x 2 + 9

Step 3: We consider the new divisor 11 and the new remainder 9, and apply the division lemma to get

11 = 9 x 1 + 2

We consider the new divisor 9 and the new remainder 2,and apply the division lemma to get

9 = 2 x 4 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 31 and 445 is 1

Notice that 1 = HCF(2,1) = HCF(9,2) = HCF(11,9) = HCF(31,11) = HCF(445,31) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 966 > 1, we apply the division lemma to 966 and 1, to get

966 = 1 x 966 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 966 is 1

Notice that 1 = HCF(966,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 527, 248, 445, 966 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 527, 248, 445, 966?

Answer: HCF of 527, 248, 445, 966 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 527, 248, 445, 966 using Euclid's Algorithm?

Answer: For arbitrary numbers 527, 248, 445, 966 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.