Highest Common Factor of 528, 2957 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 528, 2957 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 528, 2957 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 528, 2957 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 528, 2957 is 1.

HCF(528, 2957) = 1

HCF of 528, 2957 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 528, 2957 is 1.

Highest Common Factor of 528,2957 using Euclid's algorithm

Highest Common Factor of 528,2957 is 1

Step 1: Since 2957 > 528, we apply the division lemma to 2957 and 528, to get

2957 = 528 x 5 + 317

Step 2: Since the reminder 528 ≠ 0, we apply division lemma to 317 and 528, to get

528 = 317 x 1 + 211

Step 3: We consider the new divisor 317 and the new remainder 211, and apply the division lemma to get

317 = 211 x 1 + 106

We consider the new divisor 211 and the new remainder 106,and apply the division lemma to get

211 = 106 x 1 + 105

We consider the new divisor 106 and the new remainder 105,and apply the division lemma to get

106 = 105 x 1 + 1

We consider the new divisor 105 and the new remainder 1,and apply the division lemma to get

105 = 1 x 105 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 528 and 2957 is 1

Notice that 1 = HCF(105,1) = HCF(106,105) = HCF(211,106) = HCF(317,211) = HCF(528,317) = HCF(2957,528) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 528, 2957 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 528, 2957?

Answer: HCF of 528, 2957 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 528, 2957 using Euclid's Algorithm?

Answer: For arbitrary numbers 528, 2957 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.