Highest Common Factor of 528, 7243, 9187 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 528, 7243, 9187 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 528, 7243, 9187 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 528, 7243, 9187 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 528, 7243, 9187 is 1.

HCF(528, 7243, 9187) = 1

HCF of 528, 7243, 9187 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 528, 7243, 9187 is 1.

Highest Common Factor of 528,7243,9187 using Euclid's algorithm

Highest Common Factor of 528,7243,9187 is 1

Step 1: Since 7243 > 528, we apply the division lemma to 7243 and 528, to get

7243 = 528 x 13 + 379

Step 2: Since the reminder 528 ≠ 0, we apply division lemma to 379 and 528, to get

528 = 379 x 1 + 149

Step 3: We consider the new divisor 379 and the new remainder 149, and apply the division lemma to get

379 = 149 x 2 + 81

We consider the new divisor 149 and the new remainder 81,and apply the division lemma to get

149 = 81 x 1 + 68

We consider the new divisor 81 and the new remainder 68,and apply the division lemma to get

81 = 68 x 1 + 13

We consider the new divisor 68 and the new remainder 13,and apply the division lemma to get

68 = 13 x 5 + 3

We consider the new divisor 13 and the new remainder 3,and apply the division lemma to get

13 = 3 x 4 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 528 and 7243 is 1

Notice that 1 = HCF(3,1) = HCF(13,3) = HCF(68,13) = HCF(81,68) = HCF(149,81) = HCF(379,149) = HCF(528,379) = HCF(7243,528) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 9187 > 1, we apply the division lemma to 9187 and 1, to get

9187 = 1 x 9187 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 9187 is 1

Notice that 1 = HCF(9187,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 528, 7243, 9187 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 528, 7243, 9187?

Answer: HCF of 528, 7243, 9187 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 528, 7243, 9187 using Euclid's Algorithm?

Answer: For arbitrary numbers 528, 7243, 9187 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.