Highest Common Factor of 530, 906, 596 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 530, 906, 596 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 530, 906, 596 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 530, 906, 596 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 530, 906, 596 is 2.

HCF(530, 906, 596) = 2

HCF of 530, 906, 596 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 530, 906, 596 is 2.

Highest Common Factor of 530,906,596 using Euclid's algorithm

Highest Common Factor of 530,906,596 is 2

Step 1: Since 906 > 530, we apply the division lemma to 906 and 530, to get

906 = 530 x 1 + 376

Step 2: Since the reminder 530 ≠ 0, we apply division lemma to 376 and 530, to get

530 = 376 x 1 + 154

Step 3: We consider the new divisor 376 and the new remainder 154, and apply the division lemma to get

376 = 154 x 2 + 68

We consider the new divisor 154 and the new remainder 68,and apply the division lemma to get

154 = 68 x 2 + 18

We consider the new divisor 68 and the new remainder 18,and apply the division lemma to get

68 = 18 x 3 + 14

We consider the new divisor 18 and the new remainder 14,and apply the division lemma to get

18 = 14 x 1 + 4

We consider the new divisor 14 and the new remainder 4,and apply the division lemma to get

14 = 4 x 3 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 530 and 906 is 2

Notice that 2 = HCF(4,2) = HCF(14,4) = HCF(18,14) = HCF(68,18) = HCF(154,68) = HCF(376,154) = HCF(530,376) = HCF(906,530) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 596 > 2, we apply the division lemma to 596 and 2, to get

596 = 2 x 298 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 596 is 2

Notice that 2 = HCF(596,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 530, 906, 596 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 530, 906, 596?

Answer: HCF of 530, 906, 596 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 530, 906, 596 using Euclid's Algorithm?

Answer: For arbitrary numbers 530, 906, 596 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.