Highest Common Factor of 530, 943, 176 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 530, 943, 176 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 530, 943, 176 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 530, 943, 176 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 530, 943, 176 is 1.

HCF(530, 943, 176) = 1

HCF of 530, 943, 176 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 530, 943, 176 is 1.

Highest Common Factor of 530,943,176 using Euclid's algorithm

Highest Common Factor of 530,943,176 is 1

Step 1: Since 943 > 530, we apply the division lemma to 943 and 530, to get

943 = 530 x 1 + 413

Step 2: Since the reminder 530 ≠ 0, we apply division lemma to 413 and 530, to get

530 = 413 x 1 + 117

Step 3: We consider the new divisor 413 and the new remainder 117, and apply the division lemma to get

413 = 117 x 3 + 62

We consider the new divisor 117 and the new remainder 62,and apply the division lemma to get

117 = 62 x 1 + 55

We consider the new divisor 62 and the new remainder 55,and apply the division lemma to get

62 = 55 x 1 + 7

We consider the new divisor 55 and the new remainder 7,and apply the division lemma to get

55 = 7 x 7 + 6

We consider the new divisor 7 and the new remainder 6,and apply the division lemma to get

7 = 6 x 1 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 530 and 943 is 1

Notice that 1 = HCF(6,1) = HCF(7,6) = HCF(55,7) = HCF(62,55) = HCF(117,62) = HCF(413,117) = HCF(530,413) = HCF(943,530) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 176 > 1, we apply the division lemma to 176 and 1, to get

176 = 1 x 176 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 176 is 1

Notice that 1 = HCF(176,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 530, 943, 176 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 530, 943, 176?

Answer: HCF of 530, 943, 176 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 530, 943, 176 using Euclid's Algorithm?

Answer: For arbitrary numbers 530, 943, 176 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.