Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 533, 403, 481 i.e. 13 the largest integer that leaves a remainder zero for all numbers.
HCF of 533, 403, 481 is 13 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 533, 403, 481 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 533, 403, 481 is 13.
HCF(533, 403, 481) = 13
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 533, 403, 481 is 13.
Step 1: Since 533 > 403, we apply the division lemma to 533 and 403, to get
533 = 403 x 1 + 130
Step 2: Since the reminder 403 ≠ 0, we apply division lemma to 130 and 403, to get
403 = 130 x 3 + 13
Step 3: We consider the new divisor 130 and the new remainder 13, and apply the division lemma to get
130 = 13 x 10 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 13, the HCF of 533 and 403 is 13
Notice that 13 = HCF(130,13) = HCF(403,130) = HCF(533,403) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 481 > 13, we apply the division lemma to 481 and 13, to get
481 = 13 x 37 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 13, the HCF of 13 and 481 is 13
Notice that 13 = HCF(481,13) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 533, 403, 481?
Answer: HCF of 533, 403, 481 is 13 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 533, 403, 481 using Euclid's Algorithm?
Answer: For arbitrary numbers 533, 403, 481 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.