Highest Common Factor of 533, 730, 557 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 533, 730, 557 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 533, 730, 557 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 533, 730, 557 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 533, 730, 557 is 1.

HCF(533, 730, 557) = 1

HCF of 533, 730, 557 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 533, 730, 557 is 1.

Highest Common Factor of 533,730,557 using Euclid's algorithm

Highest Common Factor of 533,730,557 is 1

Step 1: Since 730 > 533, we apply the division lemma to 730 and 533, to get

730 = 533 x 1 + 197

Step 2: Since the reminder 533 ≠ 0, we apply division lemma to 197 and 533, to get

533 = 197 x 2 + 139

Step 3: We consider the new divisor 197 and the new remainder 139, and apply the division lemma to get

197 = 139 x 1 + 58

We consider the new divisor 139 and the new remainder 58,and apply the division lemma to get

139 = 58 x 2 + 23

We consider the new divisor 58 and the new remainder 23,and apply the division lemma to get

58 = 23 x 2 + 12

We consider the new divisor 23 and the new remainder 12,and apply the division lemma to get

23 = 12 x 1 + 11

We consider the new divisor 12 and the new remainder 11,and apply the division lemma to get

12 = 11 x 1 + 1

We consider the new divisor 11 and the new remainder 1,and apply the division lemma to get

11 = 1 x 11 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 533 and 730 is 1

Notice that 1 = HCF(11,1) = HCF(12,11) = HCF(23,12) = HCF(58,23) = HCF(139,58) = HCF(197,139) = HCF(533,197) = HCF(730,533) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 557 > 1, we apply the division lemma to 557 and 1, to get

557 = 1 x 557 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 557 is 1

Notice that 1 = HCF(557,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 533, 730, 557 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 533, 730, 557?

Answer: HCF of 533, 730, 557 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 533, 730, 557 using Euclid's Algorithm?

Answer: For arbitrary numbers 533, 730, 557 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.