Highest Common Factor of 535, 736, 944 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 535, 736, 944 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 535, 736, 944 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 535, 736, 944 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 535, 736, 944 is 1.

HCF(535, 736, 944) = 1

HCF of 535, 736, 944 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 535, 736, 944 is 1.

Highest Common Factor of 535,736,944 using Euclid's algorithm

Highest Common Factor of 535,736,944 is 1

Step 1: Since 736 > 535, we apply the division lemma to 736 and 535, to get

736 = 535 x 1 + 201

Step 2: Since the reminder 535 ≠ 0, we apply division lemma to 201 and 535, to get

535 = 201 x 2 + 133

Step 3: We consider the new divisor 201 and the new remainder 133, and apply the division lemma to get

201 = 133 x 1 + 68

We consider the new divisor 133 and the new remainder 68,and apply the division lemma to get

133 = 68 x 1 + 65

We consider the new divisor 68 and the new remainder 65,and apply the division lemma to get

68 = 65 x 1 + 3

We consider the new divisor 65 and the new remainder 3,and apply the division lemma to get

65 = 3 x 21 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 535 and 736 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(65,3) = HCF(68,65) = HCF(133,68) = HCF(201,133) = HCF(535,201) = HCF(736,535) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 944 > 1, we apply the division lemma to 944 and 1, to get

944 = 1 x 944 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 944 is 1

Notice that 1 = HCF(944,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 535, 736, 944 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 535, 736, 944?

Answer: HCF of 535, 736, 944 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 535, 736, 944 using Euclid's Algorithm?

Answer: For arbitrary numbers 535, 736, 944 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.