Highest Common Factor of 537, 764, 190, 881 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 537, 764, 190, 881 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 537, 764, 190, 881 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 537, 764, 190, 881 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 537, 764, 190, 881 is 1.

HCF(537, 764, 190, 881) = 1

HCF of 537, 764, 190, 881 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 537, 764, 190, 881 is 1.

Highest Common Factor of 537,764,190,881 using Euclid's algorithm

Highest Common Factor of 537,764,190,881 is 1

Step 1: Since 764 > 537, we apply the division lemma to 764 and 537, to get

764 = 537 x 1 + 227

Step 2: Since the reminder 537 ≠ 0, we apply division lemma to 227 and 537, to get

537 = 227 x 2 + 83

Step 3: We consider the new divisor 227 and the new remainder 83, and apply the division lemma to get

227 = 83 x 2 + 61

We consider the new divisor 83 and the new remainder 61,and apply the division lemma to get

83 = 61 x 1 + 22

We consider the new divisor 61 and the new remainder 22,and apply the division lemma to get

61 = 22 x 2 + 17

We consider the new divisor 22 and the new remainder 17,and apply the division lemma to get

22 = 17 x 1 + 5

We consider the new divisor 17 and the new remainder 5,and apply the division lemma to get

17 = 5 x 3 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 537 and 764 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(17,5) = HCF(22,17) = HCF(61,22) = HCF(83,61) = HCF(227,83) = HCF(537,227) = HCF(764,537) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 190 > 1, we apply the division lemma to 190 and 1, to get

190 = 1 x 190 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 190 is 1

Notice that 1 = HCF(190,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 881 > 1, we apply the division lemma to 881 and 1, to get

881 = 1 x 881 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 881 is 1

Notice that 1 = HCF(881,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 537, 764, 190, 881 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 537, 764, 190, 881?

Answer: HCF of 537, 764, 190, 881 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 537, 764, 190, 881 using Euclid's Algorithm?

Answer: For arbitrary numbers 537, 764, 190, 881 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.