Highest Common Factor of 537, 970, 462, 853 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 537, 970, 462, 853 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 537, 970, 462, 853 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 537, 970, 462, 853 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 537, 970, 462, 853 is 1.

HCF(537, 970, 462, 853) = 1

HCF of 537, 970, 462, 853 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 537, 970, 462, 853 is 1.

Highest Common Factor of 537,970,462,853 using Euclid's algorithm

Highest Common Factor of 537,970,462,853 is 1

Step 1: Since 970 > 537, we apply the division lemma to 970 and 537, to get

970 = 537 x 1 + 433

Step 2: Since the reminder 537 ≠ 0, we apply division lemma to 433 and 537, to get

537 = 433 x 1 + 104

Step 3: We consider the new divisor 433 and the new remainder 104, and apply the division lemma to get

433 = 104 x 4 + 17

We consider the new divisor 104 and the new remainder 17,and apply the division lemma to get

104 = 17 x 6 + 2

We consider the new divisor 17 and the new remainder 2,and apply the division lemma to get

17 = 2 x 8 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 537 and 970 is 1

Notice that 1 = HCF(2,1) = HCF(17,2) = HCF(104,17) = HCF(433,104) = HCF(537,433) = HCF(970,537) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 462 > 1, we apply the division lemma to 462 and 1, to get

462 = 1 x 462 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 462 is 1

Notice that 1 = HCF(462,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 853 > 1, we apply the division lemma to 853 and 1, to get

853 = 1 x 853 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 853 is 1

Notice that 1 = HCF(853,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 537, 970, 462, 853 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 537, 970, 462, 853?

Answer: HCF of 537, 970, 462, 853 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 537, 970, 462, 853 using Euclid's Algorithm?

Answer: For arbitrary numbers 537, 970, 462, 853 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.