Highest Common Factor of 5379, 4756 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5379, 4756 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 5379, 4756 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5379, 4756 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5379, 4756 is 1.

HCF(5379, 4756) = 1

HCF of 5379, 4756 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5379, 4756 is 1.

Highest Common Factor of 5379,4756 using Euclid's algorithm

Highest Common Factor of 5379,4756 is 1

Step 1: Since 5379 > 4756, we apply the division lemma to 5379 and 4756, to get

5379 = 4756 x 1 + 623

Step 2: Since the reminder 4756 ≠ 0, we apply division lemma to 623 and 4756, to get

4756 = 623 x 7 + 395

Step 3: We consider the new divisor 623 and the new remainder 395, and apply the division lemma to get

623 = 395 x 1 + 228

We consider the new divisor 395 and the new remainder 228,and apply the division lemma to get

395 = 228 x 1 + 167

We consider the new divisor 228 and the new remainder 167,and apply the division lemma to get

228 = 167 x 1 + 61

We consider the new divisor 167 and the new remainder 61,and apply the division lemma to get

167 = 61 x 2 + 45

We consider the new divisor 61 and the new remainder 45,and apply the division lemma to get

61 = 45 x 1 + 16

We consider the new divisor 45 and the new remainder 16,and apply the division lemma to get

45 = 16 x 2 + 13

We consider the new divisor 16 and the new remainder 13,and apply the division lemma to get

16 = 13 x 1 + 3

We consider the new divisor 13 and the new remainder 3,and apply the division lemma to get

13 = 3 x 4 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5379 and 4756 is 1

Notice that 1 = HCF(3,1) = HCF(13,3) = HCF(16,13) = HCF(45,16) = HCF(61,45) = HCF(167,61) = HCF(228,167) = HCF(395,228) = HCF(623,395) = HCF(4756,623) = HCF(5379,4756) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5379, 4756 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5379, 4756?

Answer: HCF of 5379, 4756 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5379, 4756 using Euclid's Algorithm?

Answer: For arbitrary numbers 5379, 4756 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.