Highest Common Factor of 538, 335 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 538, 335 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 538, 335 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 538, 335 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 538, 335 is 1.

HCF(538, 335) = 1

HCF of 538, 335 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 538, 335 is 1.

Highest Common Factor of 538,335 using Euclid's algorithm

Highest Common Factor of 538,335 is 1

Step 1: Since 538 > 335, we apply the division lemma to 538 and 335, to get

538 = 335 x 1 + 203

Step 2: Since the reminder 335 ≠ 0, we apply division lemma to 203 and 335, to get

335 = 203 x 1 + 132

Step 3: We consider the new divisor 203 and the new remainder 132, and apply the division lemma to get

203 = 132 x 1 + 71

We consider the new divisor 132 and the new remainder 71,and apply the division lemma to get

132 = 71 x 1 + 61

We consider the new divisor 71 and the new remainder 61,and apply the division lemma to get

71 = 61 x 1 + 10

We consider the new divisor 61 and the new remainder 10,and apply the division lemma to get

61 = 10 x 6 + 1

We consider the new divisor 10 and the new remainder 1,and apply the division lemma to get

10 = 1 x 10 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 538 and 335 is 1

Notice that 1 = HCF(10,1) = HCF(61,10) = HCF(71,61) = HCF(132,71) = HCF(203,132) = HCF(335,203) = HCF(538,335) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 538, 335 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 538, 335?

Answer: HCF of 538, 335 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 538, 335 using Euclid's Algorithm?

Answer: For arbitrary numbers 538, 335 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.