Highest Common Factor of 54, 36, 841, 711 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 54, 36, 841, 711 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 54, 36, 841, 711 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 54, 36, 841, 711 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 54, 36, 841, 711 is 1.

HCF(54, 36, 841, 711) = 1

HCF of 54, 36, 841, 711 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 54, 36, 841, 711 is 1.

Highest Common Factor of 54,36,841,711 using Euclid's algorithm

Highest Common Factor of 54,36,841,711 is 1

Step 1: Since 54 > 36, we apply the division lemma to 54 and 36, to get

54 = 36 x 1 + 18

Step 2: Since the reminder 36 ≠ 0, we apply division lemma to 18 and 36, to get

36 = 18 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 18, the HCF of 54 and 36 is 18

Notice that 18 = HCF(36,18) = HCF(54,36) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 841 > 18, we apply the division lemma to 841 and 18, to get

841 = 18 x 46 + 13

Step 2: Since the reminder 18 ≠ 0, we apply division lemma to 13 and 18, to get

18 = 13 x 1 + 5

Step 3: We consider the new divisor 13 and the new remainder 5, and apply the division lemma to get

13 = 5 x 2 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 18 and 841 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(13,5) = HCF(18,13) = HCF(841,18) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 711 > 1, we apply the division lemma to 711 and 1, to get

711 = 1 x 711 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 711 is 1

Notice that 1 = HCF(711,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 54, 36, 841, 711 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 54, 36, 841, 711?

Answer: HCF of 54, 36, 841, 711 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 54, 36, 841, 711 using Euclid's Algorithm?

Answer: For arbitrary numbers 54, 36, 841, 711 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.