Highest Common Factor of 54, 90, 65, 657 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 54, 90, 65, 657 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 54, 90, 65, 657 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 54, 90, 65, 657 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 54, 90, 65, 657 is 1.

HCF(54, 90, 65, 657) = 1

HCF of 54, 90, 65, 657 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 54, 90, 65, 657 is 1.

Highest Common Factor of 54,90,65,657 using Euclid's algorithm

Highest Common Factor of 54,90,65,657 is 1

Step 1: Since 90 > 54, we apply the division lemma to 90 and 54, to get

90 = 54 x 1 + 36

Step 2: Since the reminder 54 ≠ 0, we apply division lemma to 36 and 54, to get

54 = 36 x 1 + 18

Step 3: We consider the new divisor 36 and the new remainder 18, and apply the division lemma to get

36 = 18 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 18, the HCF of 54 and 90 is 18

Notice that 18 = HCF(36,18) = HCF(54,36) = HCF(90,54) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 65 > 18, we apply the division lemma to 65 and 18, to get

65 = 18 x 3 + 11

Step 2: Since the reminder 18 ≠ 0, we apply division lemma to 11 and 18, to get

18 = 11 x 1 + 7

Step 3: We consider the new divisor 11 and the new remainder 7, and apply the division lemma to get

11 = 7 x 1 + 4

We consider the new divisor 7 and the new remainder 4,and apply the division lemma to get

7 = 4 x 1 + 3

We consider the new divisor 4 and the new remainder 3,and apply the division lemma to get

4 = 3 x 1 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 18 and 65 is 1

Notice that 1 = HCF(3,1) = HCF(4,3) = HCF(7,4) = HCF(11,7) = HCF(18,11) = HCF(65,18) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 657 > 1, we apply the division lemma to 657 and 1, to get

657 = 1 x 657 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 657 is 1

Notice that 1 = HCF(657,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 54, 90, 65, 657 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 54, 90, 65, 657?

Answer: HCF of 54, 90, 65, 657 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 54, 90, 65, 657 using Euclid's Algorithm?

Answer: For arbitrary numbers 54, 90, 65, 657 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.