Highest Common Factor of 540, 807, 393, 911 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 540, 807, 393, 911 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 540, 807, 393, 911 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 540, 807, 393, 911 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 540, 807, 393, 911 is 1.

HCF(540, 807, 393, 911) = 1

HCF of 540, 807, 393, 911 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 540, 807, 393, 911 is 1.

Highest Common Factor of 540,807,393,911 using Euclid's algorithm

Highest Common Factor of 540,807,393,911 is 1

Step 1: Since 807 > 540, we apply the division lemma to 807 and 540, to get

807 = 540 x 1 + 267

Step 2: Since the reminder 540 ≠ 0, we apply division lemma to 267 and 540, to get

540 = 267 x 2 + 6

Step 3: We consider the new divisor 267 and the new remainder 6, and apply the division lemma to get

267 = 6 x 44 + 3

We consider the new divisor 6 and the new remainder 3, and apply the division lemma to get

6 = 3 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 540 and 807 is 3

Notice that 3 = HCF(6,3) = HCF(267,6) = HCF(540,267) = HCF(807,540) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 393 > 3, we apply the division lemma to 393 and 3, to get

393 = 3 x 131 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 3 and 393 is 3

Notice that 3 = HCF(393,3) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 911 > 3, we apply the division lemma to 911 and 3, to get

911 = 3 x 303 + 2

Step 2: Since the reminder 3 ≠ 0, we apply division lemma to 2 and 3, to get

3 = 2 x 1 + 1

Step 3: We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 3 and 911 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(911,3) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 540, 807, 393, 911 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 540, 807, 393, 911?

Answer: HCF of 540, 807, 393, 911 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 540, 807, 393, 911 using Euclid's Algorithm?

Answer: For arbitrary numbers 540, 807, 393, 911 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.