Highest Common Factor of 541, 437, 938, 507 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 541, 437, 938, 507 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 541, 437, 938, 507 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 541, 437, 938, 507 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 541, 437, 938, 507 is 1.

HCF(541, 437, 938, 507) = 1

HCF of 541, 437, 938, 507 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 541, 437, 938, 507 is 1.

Highest Common Factor of 541,437,938,507 using Euclid's algorithm

Highest Common Factor of 541,437,938,507 is 1

Step 1: Since 541 > 437, we apply the division lemma to 541 and 437, to get

541 = 437 x 1 + 104

Step 2: Since the reminder 437 ≠ 0, we apply division lemma to 104 and 437, to get

437 = 104 x 4 + 21

Step 3: We consider the new divisor 104 and the new remainder 21, and apply the division lemma to get

104 = 21 x 4 + 20

We consider the new divisor 21 and the new remainder 20,and apply the division lemma to get

21 = 20 x 1 + 1

We consider the new divisor 20 and the new remainder 1,and apply the division lemma to get

20 = 1 x 20 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 541 and 437 is 1

Notice that 1 = HCF(20,1) = HCF(21,20) = HCF(104,21) = HCF(437,104) = HCF(541,437) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 938 > 1, we apply the division lemma to 938 and 1, to get

938 = 1 x 938 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 938 is 1

Notice that 1 = HCF(938,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 507 > 1, we apply the division lemma to 507 and 1, to get

507 = 1 x 507 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 507 is 1

Notice that 1 = HCF(507,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 541, 437, 938, 507 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 541, 437, 938, 507?

Answer: HCF of 541, 437, 938, 507 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 541, 437, 938, 507 using Euclid's Algorithm?

Answer: For arbitrary numbers 541, 437, 938, 507 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.