Highest Common Factor of 541, 860, 515 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 541, 860, 515 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 541, 860, 515 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 541, 860, 515 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 541, 860, 515 is 1.

HCF(541, 860, 515) = 1

HCF of 541, 860, 515 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 541, 860, 515 is 1.

Highest Common Factor of 541,860,515 using Euclid's algorithm

Highest Common Factor of 541,860,515 is 1

Step 1: Since 860 > 541, we apply the division lemma to 860 and 541, to get

860 = 541 x 1 + 319

Step 2: Since the reminder 541 ≠ 0, we apply division lemma to 319 and 541, to get

541 = 319 x 1 + 222

Step 3: We consider the new divisor 319 and the new remainder 222, and apply the division lemma to get

319 = 222 x 1 + 97

We consider the new divisor 222 and the new remainder 97,and apply the division lemma to get

222 = 97 x 2 + 28

We consider the new divisor 97 and the new remainder 28,and apply the division lemma to get

97 = 28 x 3 + 13

We consider the new divisor 28 and the new remainder 13,and apply the division lemma to get

28 = 13 x 2 + 2

We consider the new divisor 13 and the new remainder 2,and apply the division lemma to get

13 = 2 x 6 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 541 and 860 is 1

Notice that 1 = HCF(2,1) = HCF(13,2) = HCF(28,13) = HCF(97,28) = HCF(222,97) = HCF(319,222) = HCF(541,319) = HCF(860,541) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 515 > 1, we apply the division lemma to 515 and 1, to get

515 = 1 x 515 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 515 is 1

Notice that 1 = HCF(515,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 541, 860, 515 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 541, 860, 515?

Answer: HCF of 541, 860, 515 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 541, 860, 515 using Euclid's Algorithm?

Answer: For arbitrary numbers 541, 860, 515 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.