Highest Common Factor of 542, 806, 491 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 542, 806, 491 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 542, 806, 491 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 542, 806, 491 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 542, 806, 491 is 1.

HCF(542, 806, 491) = 1

HCF of 542, 806, 491 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 542, 806, 491 is 1.

Highest Common Factor of 542,806,491 using Euclid's algorithm

Highest Common Factor of 542,806,491 is 1

Step 1: Since 806 > 542, we apply the division lemma to 806 and 542, to get

806 = 542 x 1 + 264

Step 2: Since the reminder 542 ≠ 0, we apply division lemma to 264 and 542, to get

542 = 264 x 2 + 14

Step 3: We consider the new divisor 264 and the new remainder 14, and apply the division lemma to get

264 = 14 x 18 + 12

We consider the new divisor 14 and the new remainder 12,and apply the division lemma to get

14 = 12 x 1 + 2

We consider the new divisor 12 and the new remainder 2,and apply the division lemma to get

12 = 2 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 542 and 806 is 2

Notice that 2 = HCF(12,2) = HCF(14,12) = HCF(264,14) = HCF(542,264) = HCF(806,542) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 491 > 2, we apply the division lemma to 491 and 2, to get

491 = 2 x 245 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 491 is 1

Notice that 1 = HCF(2,1) = HCF(491,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 542, 806, 491 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 542, 806, 491?

Answer: HCF of 542, 806, 491 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 542, 806, 491 using Euclid's Algorithm?

Answer: For arbitrary numbers 542, 806, 491 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.