Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 543, 2738, 5064 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 543, 2738, 5064 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 543, 2738, 5064 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 543, 2738, 5064 is 1.
HCF(543, 2738, 5064) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 543, 2738, 5064 is 1.
Step 1: Since 2738 > 543, we apply the division lemma to 2738 and 543, to get
2738 = 543 x 5 + 23
Step 2: Since the reminder 543 ≠ 0, we apply division lemma to 23 and 543, to get
543 = 23 x 23 + 14
Step 3: We consider the new divisor 23 and the new remainder 14, and apply the division lemma to get
23 = 14 x 1 + 9
We consider the new divisor 14 and the new remainder 9,and apply the division lemma to get
14 = 9 x 1 + 5
We consider the new divisor 9 and the new remainder 5,and apply the division lemma to get
9 = 5 x 1 + 4
We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get
5 = 4 x 1 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 543 and 2738 is 1
Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(9,5) = HCF(14,9) = HCF(23,14) = HCF(543,23) = HCF(2738,543) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 5064 > 1, we apply the division lemma to 5064 and 1, to get
5064 = 1 x 5064 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 5064 is 1
Notice that 1 = HCF(5064,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 543, 2738, 5064?
Answer: HCF of 543, 2738, 5064 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 543, 2738, 5064 using Euclid's Algorithm?
Answer: For arbitrary numbers 543, 2738, 5064 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.