Highest Common Factor of 544, 13955 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 544, 13955 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 544, 13955 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 544, 13955 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 544, 13955 is 1.

HCF(544, 13955) = 1

HCF of 544, 13955 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 544, 13955 is 1.

Highest Common Factor of 544,13955 using Euclid's algorithm

Highest Common Factor of 544,13955 is 1

Step 1: Since 13955 > 544, we apply the division lemma to 13955 and 544, to get

13955 = 544 x 25 + 355

Step 2: Since the reminder 544 ≠ 0, we apply division lemma to 355 and 544, to get

544 = 355 x 1 + 189

Step 3: We consider the new divisor 355 and the new remainder 189, and apply the division lemma to get

355 = 189 x 1 + 166

We consider the new divisor 189 and the new remainder 166,and apply the division lemma to get

189 = 166 x 1 + 23

We consider the new divisor 166 and the new remainder 23,and apply the division lemma to get

166 = 23 x 7 + 5

We consider the new divisor 23 and the new remainder 5,and apply the division lemma to get

23 = 5 x 4 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 544 and 13955 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(23,5) = HCF(166,23) = HCF(189,166) = HCF(355,189) = HCF(544,355) = HCF(13955,544) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 544, 13955 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 544, 13955?

Answer: HCF of 544, 13955 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 544, 13955 using Euclid's Algorithm?

Answer: For arbitrary numbers 544, 13955 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.