Highest Common Factor of 544, 886, 180 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 544, 886, 180 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 544, 886, 180 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 544, 886, 180 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 544, 886, 180 is 2.

HCF(544, 886, 180) = 2

HCF of 544, 886, 180 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 544, 886, 180 is 2.

Highest Common Factor of 544,886,180 using Euclid's algorithm

Highest Common Factor of 544,886,180 is 2

Step 1: Since 886 > 544, we apply the division lemma to 886 and 544, to get

886 = 544 x 1 + 342

Step 2: Since the reminder 544 ≠ 0, we apply division lemma to 342 and 544, to get

544 = 342 x 1 + 202

Step 3: We consider the new divisor 342 and the new remainder 202, and apply the division lemma to get

342 = 202 x 1 + 140

We consider the new divisor 202 and the new remainder 140,and apply the division lemma to get

202 = 140 x 1 + 62

We consider the new divisor 140 and the new remainder 62,and apply the division lemma to get

140 = 62 x 2 + 16

We consider the new divisor 62 and the new remainder 16,and apply the division lemma to get

62 = 16 x 3 + 14

We consider the new divisor 16 and the new remainder 14,and apply the division lemma to get

16 = 14 x 1 + 2

We consider the new divisor 14 and the new remainder 2,and apply the division lemma to get

14 = 2 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 544 and 886 is 2

Notice that 2 = HCF(14,2) = HCF(16,14) = HCF(62,16) = HCF(140,62) = HCF(202,140) = HCF(342,202) = HCF(544,342) = HCF(886,544) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 180 > 2, we apply the division lemma to 180 and 2, to get

180 = 2 x 90 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 180 is 2

Notice that 2 = HCF(180,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 544, 886, 180 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 544, 886, 180?

Answer: HCF of 544, 886, 180 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 544, 886, 180 using Euclid's Algorithm?

Answer: For arbitrary numbers 544, 886, 180 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.