Highest Common Factor of 5449, 4939 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5449, 4939 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 5449, 4939 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5449, 4939 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5449, 4939 is 1.

HCF(5449, 4939) = 1

HCF of 5449, 4939 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5449, 4939 is 1.

Highest Common Factor of 5449,4939 using Euclid's algorithm

Highest Common Factor of 5449,4939 is 1

Step 1: Since 5449 > 4939, we apply the division lemma to 5449 and 4939, to get

5449 = 4939 x 1 + 510

Step 2: Since the reminder 4939 ≠ 0, we apply division lemma to 510 and 4939, to get

4939 = 510 x 9 + 349

Step 3: We consider the new divisor 510 and the new remainder 349, and apply the division lemma to get

510 = 349 x 1 + 161

We consider the new divisor 349 and the new remainder 161,and apply the division lemma to get

349 = 161 x 2 + 27

We consider the new divisor 161 and the new remainder 27,and apply the division lemma to get

161 = 27 x 5 + 26

We consider the new divisor 27 and the new remainder 26,and apply the division lemma to get

27 = 26 x 1 + 1

We consider the new divisor 26 and the new remainder 1,and apply the division lemma to get

26 = 1 x 26 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5449 and 4939 is 1

Notice that 1 = HCF(26,1) = HCF(27,26) = HCF(161,27) = HCF(349,161) = HCF(510,349) = HCF(4939,510) = HCF(5449,4939) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5449, 4939 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5449, 4939?

Answer: HCF of 5449, 4939 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5449, 4939 using Euclid's Algorithm?

Answer: For arbitrary numbers 5449, 4939 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.