Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 546, 462 i.e. 42 the largest integer that leaves a remainder zero for all numbers.
HCF of 546, 462 is 42 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 546, 462 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 546, 462 is 42.
HCF(546, 462) = 42
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 546, 462 is 42.
Step 1: Since 546 > 462, we apply the division lemma to 546 and 462, to get
546 = 462 x 1 + 84
Step 2: Since the reminder 462 ≠ 0, we apply division lemma to 84 and 462, to get
462 = 84 x 5 + 42
Step 3: We consider the new divisor 84 and the new remainder 42, and apply the division lemma to get
84 = 42 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 42, the HCF of 546 and 462 is 42
Notice that 42 = HCF(84,42) = HCF(462,84) = HCF(546,462) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 546, 462?
Answer: HCF of 546, 462 is 42 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 546, 462 using Euclid's Algorithm?
Answer: For arbitrary numbers 546, 462 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.