Highest Common Factor of 5466, 2541 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5466, 2541 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 5466, 2541 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5466, 2541 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5466, 2541 is 3.

HCF(5466, 2541) = 3

HCF of 5466, 2541 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5466, 2541 is 3.

Highest Common Factor of 5466,2541 using Euclid's algorithm

Highest Common Factor of 5466,2541 is 3

Step 1: Since 5466 > 2541, we apply the division lemma to 5466 and 2541, to get

5466 = 2541 x 2 + 384

Step 2: Since the reminder 2541 ≠ 0, we apply division lemma to 384 and 2541, to get

2541 = 384 x 6 + 237

Step 3: We consider the new divisor 384 and the new remainder 237, and apply the division lemma to get

384 = 237 x 1 + 147

We consider the new divisor 237 and the new remainder 147,and apply the division lemma to get

237 = 147 x 1 + 90

We consider the new divisor 147 and the new remainder 90,and apply the division lemma to get

147 = 90 x 1 + 57

We consider the new divisor 90 and the new remainder 57,and apply the division lemma to get

90 = 57 x 1 + 33

We consider the new divisor 57 and the new remainder 33,and apply the division lemma to get

57 = 33 x 1 + 24

We consider the new divisor 33 and the new remainder 24,and apply the division lemma to get

33 = 24 x 1 + 9

We consider the new divisor 24 and the new remainder 9,and apply the division lemma to get

24 = 9 x 2 + 6

We consider the new divisor 9 and the new remainder 6,and apply the division lemma to get

9 = 6 x 1 + 3

We consider the new divisor 6 and the new remainder 3,and apply the division lemma to get

6 = 3 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 5466 and 2541 is 3

Notice that 3 = HCF(6,3) = HCF(9,6) = HCF(24,9) = HCF(33,24) = HCF(57,33) = HCF(90,57) = HCF(147,90) = HCF(237,147) = HCF(384,237) = HCF(2541,384) = HCF(5466,2541) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5466, 2541 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5466, 2541?

Answer: HCF of 5466, 2541 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5466, 2541 using Euclid's Algorithm?

Answer: For arbitrary numbers 5466, 2541 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.