Highest Common Factor of 5469, 6354 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5469, 6354 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 5469, 6354 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5469, 6354 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5469, 6354 is 3.

HCF(5469, 6354) = 3

HCF of 5469, 6354 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5469, 6354 is 3.

Highest Common Factor of 5469,6354 using Euclid's algorithm

Highest Common Factor of 5469,6354 is 3

Step 1: Since 6354 > 5469, we apply the division lemma to 6354 and 5469, to get

6354 = 5469 x 1 + 885

Step 2: Since the reminder 5469 ≠ 0, we apply division lemma to 885 and 5469, to get

5469 = 885 x 6 + 159

Step 3: We consider the new divisor 885 and the new remainder 159, and apply the division lemma to get

885 = 159 x 5 + 90

We consider the new divisor 159 and the new remainder 90,and apply the division lemma to get

159 = 90 x 1 + 69

We consider the new divisor 90 and the new remainder 69,and apply the division lemma to get

90 = 69 x 1 + 21

We consider the new divisor 69 and the new remainder 21,and apply the division lemma to get

69 = 21 x 3 + 6

We consider the new divisor 21 and the new remainder 6,and apply the division lemma to get

21 = 6 x 3 + 3

We consider the new divisor 6 and the new remainder 3,and apply the division lemma to get

6 = 3 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 5469 and 6354 is 3

Notice that 3 = HCF(6,3) = HCF(21,6) = HCF(69,21) = HCF(90,69) = HCF(159,90) = HCF(885,159) = HCF(5469,885) = HCF(6354,5469) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5469, 6354 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5469, 6354?

Answer: HCF of 5469, 6354 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5469, 6354 using Euclid's Algorithm?

Answer: For arbitrary numbers 5469, 6354 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.