Highest Common Factor of 550, 560, 912, 745 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 550, 560, 912, 745 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 550, 560, 912, 745 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 550, 560, 912, 745 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 550, 560, 912, 745 is 1.

HCF(550, 560, 912, 745) = 1

HCF of 550, 560, 912, 745 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 550, 560, 912, 745 is 1.

Highest Common Factor of 550,560,912,745 using Euclid's algorithm

Highest Common Factor of 550,560,912,745 is 1

Step 1: Since 560 > 550, we apply the division lemma to 560 and 550, to get

560 = 550 x 1 + 10

Step 2: Since the reminder 550 ≠ 0, we apply division lemma to 10 and 550, to get

550 = 10 x 55 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 10, the HCF of 550 and 560 is 10

Notice that 10 = HCF(550,10) = HCF(560,550) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 912 > 10, we apply the division lemma to 912 and 10, to get

912 = 10 x 91 + 2

Step 2: Since the reminder 10 ≠ 0, we apply division lemma to 2 and 10, to get

10 = 2 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 10 and 912 is 2

Notice that 2 = HCF(10,2) = HCF(912,10) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 745 > 2, we apply the division lemma to 745 and 2, to get

745 = 2 x 372 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 745 is 1

Notice that 1 = HCF(2,1) = HCF(745,2) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 550, 560, 912, 745 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 550, 560, 912, 745?

Answer: HCF of 550, 560, 912, 745 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 550, 560, 912, 745 using Euclid's Algorithm?

Answer: For arbitrary numbers 550, 560, 912, 745 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.