Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 551, 890, 988 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 551, 890, 988 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 551, 890, 988 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 551, 890, 988 is 1.
HCF(551, 890, 988) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 551, 890, 988 is 1.
Step 1: Since 890 > 551, we apply the division lemma to 890 and 551, to get
890 = 551 x 1 + 339
Step 2: Since the reminder 551 ≠ 0, we apply division lemma to 339 and 551, to get
551 = 339 x 1 + 212
Step 3: We consider the new divisor 339 and the new remainder 212, and apply the division lemma to get
339 = 212 x 1 + 127
We consider the new divisor 212 and the new remainder 127,and apply the division lemma to get
212 = 127 x 1 + 85
We consider the new divisor 127 and the new remainder 85,and apply the division lemma to get
127 = 85 x 1 + 42
We consider the new divisor 85 and the new remainder 42,and apply the division lemma to get
85 = 42 x 2 + 1
We consider the new divisor 42 and the new remainder 1,and apply the division lemma to get
42 = 1 x 42 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 551 and 890 is 1
Notice that 1 = HCF(42,1) = HCF(85,42) = HCF(127,85) = HCF(212,127) = HCF(339,212) = HCF(551,339) = HCF(890,551) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 988 > 1, we apply the division lemma to 988 and 1, to get
988 = 1 x 988 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 988 is 1
Notice that 1 = HCF(988,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 551, 890, 988?
Answer: HCF of 551, 890, 988 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 551, 890, 988 using Euclid's Algorithm?
Answer: For arbitrary numbers 551, 890, 988 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.