Highest Common Factor of 552, 998, 287 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 552, 998, 287 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 552, 998, 287 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 552, 998, 287 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 552, 998, 287 is 1.

HCF(552, 998, 287) = 1

HCF of 552, 998, 287 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 552, 998, 287 is 1.

Highest Common Factor of 552,998,287 using Euclid's algorithm

Highest Common Factor of 552,998,287 is 1

Step 1: Since 998 > 552, we apply the division lemma to 998 and 552, to get

998 = 552 x 1 + 446

Step 2: Since the reminder 552 ≠ 0, we apply division lemma to 446 and 552, to get

552 = 446 x 1 + 106

Step 3: We consider the new divisor 446 and the new remainder 106, and apply the division lemma to get

446 = 106 x 4 + 22

We consider the new divisor 106 and the new remainder 22,and apply the division lemma to get

106 = 22 x 4 + 18

We consider the new divisor 22 and the new remainder 18,and apply the division lemma to get

22 = 18 x 1 + 4

We consider the new divisor 18 and the new remainder 4,and apply the division lemma to get

18 = 4 x 4 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 552 and 998 is 2

Notice that 2 = HCF(4,2) = HCF(18,4) = HCF(22,18) = HCF(106,22) = HCF(446,106) = HCF(552,446) = HCF(998,552) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 287 > 2, we apply the division lemma to 287 and 2, to get

287 = 2 x 143 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 287 is 1

Notice that 1 = HCF(2,1) = HCF(287,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 552, 998, 287 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 552, 998, 287?

Answer: HCF of 552, 998, 287 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 552, 998, 287 using Euclid's Algorithm?

Answer: For arbitrary numbers 552, 998, 287 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.