Highest Common Factor of 553, 5382 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 553, 5382 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 553, 5382 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 553, 5382 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 553, 5382 is 1.

HCF(553, 5382) = 1

HCF of 553, 5382 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 553, 5382 is 1.

Highest Common Factor of 553,5382 using Euclid's algorithm

Highest Common Factor of 553,5382 is 1

Step 1: Since 5382 > 553, we apply the division lemma to 5382 and 553, to get

5382 = 553 x 9 + 405

Step 2: Since the reminder 553 ≠ 0, we apply division lemma to 405 and 553, to get

553 = 405 x 1 + 148

Step 3: We consider the new divisor 405 and the new remainder 148, and apply the division lemma to get

405 = 148 x 2 + 109

We consider the new divisor 148 and the new remainder 109,and apply the division lemma to get

148 = 109 x 1 + 39

We consider the new divisor 109 and the new remainder 39,and apply the division lemma to get

109 = 39 x 2 + 31

We consider the new divisor 39 and the new remainder 31,and apply the division lemma to get

39 = 31 x 1 + 8

We consider the new divisor 31 and the new remainder 8,and apply the division lemma to get

31 = 8 x 3 + 7

We consider the new divisor 8 and the new remainder 7,and apply the division lemma to get

8 = 7 x 1 + 1

We consider the new divisor 7 and the new remainder 1,and apply the division lemma to get

7 = 1 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 553 and 5382 is 1

Notice that 1 = HCF(7,1) = HCF(8,7) = HCF(31,8) = HCF(39,31) = HCF(109,39) = HCF(148,109) = HCF(405,148) = HCF(553,405) = HCF(5382,553) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 553, 5382 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 553, 5382?

Answer: HCF of 553, 5382 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 553, 5382 using Euclid's Algorithm?

Answer: For arbitrary numbers 553, 5382 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.