Highest Common Factor of 553, 7347 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 553, 7347 i.e. 79 the largest integer that leaves a remainder zero for all numbers.

HCF of 553, 7347 is 79 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 553, 7347 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 553, 7347 is 79.

HCF(553, 7347) = 79

HCF of 553, 7347 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 553, 7347 is 79.

Highest Common Factor of 553,7347 using Euclid's algorithm

Highest Common Factor of 553,7347 is 79

Step 1: Since 7347 > 553, we apply the division lemma to 7347 and 553, to get

7347 = 553 x 13 + 158

Step 2: Since the reminder 553 ≠ 0, we apply division lemma to 158 and 553, to get

553 = 158 x 3 + 79

Step 3: We consider the new divisor 158 and the new remainder 79, and apply the division lemma to get

158 = 79 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 79, the HCF of 553 and 7347 is 79

Notice that 79 = HCF(158,79) = HCF(553,158) = HCF(7347,553) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 553, 7347 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 553, 7347?

Answer: HCF of 553, 7347 is 79 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 553, 7347 using Euclid's Algorithm?

Answer: For arbitrary numbers 553, 7347 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.