Highest Common Factor of 553, 907 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 553, 907 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 553, 907 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 553, 907 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 553, 907 is 1.

HCF(553, 907) = 1

HCF of 553, 907 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 553, 907 is 1.

Highest Common Factor of 553,907 using Euclid's algorithm

Highest Common Factor of 553,907 is 1

Step 1: Since 907 > 553, we apply the division lemma to 907 and 553, to get

907 = 553 x 1 + 354

Step 2: Since the reminder 553 ≠ 0, we apply division lemma to 354 and 553, to get

553 = 354 x 1 + 199

Step 3: We consider the new divisor 354 and the new remainder 199, and apply the division lemma to get

354 = 199 x 1 + 155

We consider the new divisor 199 and the new remainder 155,and apply the division lemma to get

199 = 155 x 1 + 44

We consider the new divisor 155 and the new remainder 44,and apply the division lemma to get

155 = 44 x 3 + 23

We consider the new divisor 44 and the new remainder 23,and apply the division lemma to get

44 = 23 x 1 + 21

We consider the new divisor 23 and the new remainder 21,and apply the division lemma to get

23 = 21 x 1 + 2

We consider the new divisor 21 and the new remainder 2,and apply the division lemma to get

21 = 2 x 10 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 553 and 907 is 1

Notice that 1 = HCF(2,1) = HCF(21,2) = HCF(23,21) = HCF(44,23) = HCF(155,44) = HCF(199,155) = HCF(354,199) = HCF(553,354) = HCF(907,553) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 553, 907 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 553, 907?

Answer: HCF of 553, 907 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 553, 907 using Euclid's Algorithm?

Answer: For arbitrary numbers 553, 907 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.