Highest Common Factor of 553, 921, 935 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 553, 921, 935 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 553, 921, 935 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 553, 921, 935 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 553, 921, 935 is 1.

HCF(553, 921, 935) = 1

HCF of 553, 921, 935 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 553, 921, 935 is 1.

Highest Common Factor of 553,921,935 using Euclid's algorithm

Highest Common Factor of 553,921,935 is 1

Step 1: Since 921 > 553, we apply the division lemma to 921 and 553, to get

921 = 553 x 1 + 368

Step 2: Since the reminder 553 ≠ 0, we apply division lemma to 368 and 553, to get

553 = 368 x 1 + 185

Step 3: We consider the new divisor 368 and the new remainder 185, and apply the division lemma to get

368 = 185 x 1 + 183

We consider the new divisor 185 and the new remainder 183,and apply the division lemma to get

185 = 183 x 1 + 2

We consider the new divisor 183 and the new remainder 2,and apply the division lemma to get

183 = 2 x 91 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 553 and 921 is 1

Notice that 1 = HCF(2,1) = HCF(183,2) = HCF(185,183) = HCF(368,185) = HCF(553,368) = HCF(921,553) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 935 > 1, we apply the division lemma to 935 and 1, to get

935 = 1 x 935 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 935 is 1

Notice that 1 = HCF(935,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 553, 921, 935 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 553, 921, 935?

Answer: HCF of 553, 921, 935 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 553, 921, 935 using Euclid's Algorithm?

Answer: For arbitrary numbers 553, 921, 935 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.