Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 553, 943, 330 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 553, 943, 330 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 553, 943, 330 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 553, 943, 330 is 1.
HCF(553, 943, 330) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 553, 943, 330 is 1.
Step 1: Since 943 > 553, we apply the division lemma to 943 and 553, to get
943 = 553 x 1 + 390
Step 2: Since the reminder 553 ≠ 0, we apply division lemma to 390 and 553, to get
553 = 390 x 1 + 163
Step 3: We consider the new divisor 390 and the new remainder 163, and apply the division lemma to get
390 = 163 x 2 + 64
We consider the new divisor 163 and the new remainder 64,and apply the division lemma to get
163 = 64 x 2 + 35
We consider the new divisor 64 and the new remainder 35,and apply the division lemma to get
64 = 35 x 1 + 29
We consider the new divisor 35 and the new remainder 29,and apply the division lemma to get
35 = 29 x 1 + 6
We consider the new divisor 29 and the new remainder 6,and apply the division lemma to get
29 = 6 x 4 + 5
We consider the new divisor 6 and the new remainder 5,and apply the division lemma to get
6 = 5 x 1 + 1
We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get
5 = 1 x 5 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 553 and 943 is 1
Notice that 1 = HCF(5,1) = HCF(6,5) = HCF(29,6) = HCF(35,29) = HCF(64,35) = HCF(163,64) = HCF(390,163) = HCF(553,390) = HCF(943,553) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 330 > 1, we apply the division lemma to 330 and 1, to get
330 = 1 x 330 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 330 is 1
Notice that 1 = HCF(330,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 553, 943, 330?
Answer: HCF of 553, 943, 330 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 553, 943, 330 using Euclid's Algorithm?
Answer: For arbitrary numbers 553, 943, 330 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.