Highest Common Factor of 555, 981 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 555, 981 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 555, 981 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 555, 981 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 555, 981 is 3.

HCF(555, 981) = 3

HCF of 555, 981 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 555, 981 is 3.

Highest Common Factor of 555,981 using Euclid's algorithm

Highest Common Factor of 555,981 is 3

Step 1: Since 981 > 555, we apply the division lemma to 981 and 555, to get

981 = 555 x 1 + 426

Step 2: Since the reminder 555 ≠ 0, we apply division lemma to 426 and 555, to get

555 = 426 x 1 + 129

Step 3: We consider the new divisor 426 and the new remainder 129, and apply the division lemma to get

426 = 129 x 3 + 39

We consider the new divisor 129 and the new remainder 39,and apply the division lemma to get

129 = 39 x 3 + 12

We consider the new divisor 39 and the new remainder 12,and apply the division lemma to get

39 = 12 x 3 + 3

We consider the new divisor 12 and the new remainder 3,and apply the division lemma to get

12 = 3 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 555 and 981 is 3

Notice that 3 = HCF(12,3) = HCF(39,12) = HCF(129,39) = HCF(426,129) = HCF(555,426) = HCF(981,555) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 555, 981 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 555, 981?

Answer: HCF of 555, 981 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 555, 981 using Euclid's Algorithm?

Answer: For arbitrary numbers 555, 981 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.