Highest Common Factor of 556, 356, 444 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 556, 356, 444 i.e. 4 the largest integer that leaves a remainder zero for all numbers.

HCF of 556, 356, 444 is 4 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 556, 356, 444 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 556, 356, 444 is 4.

HCF(556, 356, 444) = 4

HCF of 556, 356, 444 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 556, 356, 444 is 4.

Highest Common Factor of 556,356,444 using Euclid's algorithm

Highest Common Factor of 556,356,444 is 4

Step 1: Since 556 > 356, we apply the division lemma to 556 and 356, to get

556 = 356 x 1 + 200

Step 2: Since the reminder 356 ≠ 0, we apply division lemma to 200 and 356, to get

356 = 200 x 1 + 156

Step 3: We consider the new divisor 200 and the new remainder 156, and apply the division lemma to get

200 = 156 x 1 + 44

We consider the new divisor 156 and the new remainder 44,and apply the division lemma to get

156 = 44 x 3 + 24

We consider the new divisor 44 and the new remainder 24,and apply the division lemma to get

44 = 24 x 1 + 20

We consider the new divisor 24 and the new remainder 20,and apply the division lemma to get

24 = 20 x 1 + 4

We consider the new divisor 20 and the new remainder 4,and apply the division lemma to get

20 = 4 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 556 and 356 is 4

Notice that 4 = HCF(20,4) = HCF(24,20) = HCF(44,24) = HCF(156,44) = HCF(200,156) = HCF(356,200) = HCF(556,356) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 444 > 4, we apply the division lemma to 444 and 4, to get

444 = 4 x 111 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 4 and 444 is 4

Notice that 4 = HCF(444,4) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 556, 356, 444 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 556, 356, 444?

Answer: HCF of 556, 356, 444 is 4 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 556, 356, 444 using Euclid's Algorithm?

Answer: For arbitrary numbers 556, 356, 444 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.