Highest Common Factor of 557, 654 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 557, 654 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 557, 654 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 557, 654 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 557, 654 is 1.

HCF(557, 654) = 1

HCF of 557, 654 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 557, 654 is 1.

Highest Common Factor of 557,654 using Euclid's algorithm

Highest Common Factor of 557,654 is 1

Step 1: Since 654 > 557, we apply the division lemma to 654 and 557, to get

654 = 557 x 1 + 97

Step 2: Since the reminder 557 ≠ 0, we apply division lemma to 97 and 557, to get

557 = 97 x 5 + 72

Step 3: We consider the new divisor 97 and the new remainder 72, and apply the division lemma to get

97 = 72 x 1 + 25

We consider the new divisor 72 and the new remainder 25,and apply the division lemma to get

72 = 25 x 2 + 22

We consider the new divisor 25 and the new remainder 22,and apply the division lemma to get

25 = 22 x 1 + 3

We consider the new divisor 22 and the new remainder 3,and apply the division lemma to get

22 = 3 x 7 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 557 and 654 is 1

Notice that 1 = HCF(3,1) = HCF(22,3) = HCF(25,22) = HCF(72,25) = HCF(97,72) = HCF(557,97) = HCF(654,557) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 557, 654 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 557, 654?

Answer: HCF of 557, 654 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 557, 654 using Euclid's Algorithm?

Answer: For arbitrary numbers 557, 654 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.