Highest Common Factor of 558, 874 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 558, 874 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 558, 874 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 558, 874 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 558, 874 is 2.

HCF(558, 874) = 2

HCF of 558, 874 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 558, 874 is 2.

Highest Common Factor of 558,874 using Euclid's algorithm

Highest Common Factor of 558,874 is 2

Step 1: Since 874 > 558, we apply the division lemma to 874 and 558, to get

874 = 558 x 1 + 316

Step 2: Since the reminder 558 ≠ 0, we apply division lemma to 316 and 558, to get

558 = 316 x 1 + 242

Step 3: We consider the new divisor 316 and the new remainder 242, and apply the division lemma to get

316 = 242 x 1 + 74

We consider the new divisor 242 and the new remainder 74,and apply the division lemma to get

242 = 74 x 3 + 20

We consider the new divisor 74 and the new remainder 20,and apply the division lemma to get

74 = 20 x 3 + 14

We consider the new divisor 20 and the new remainder 14,and apply the division lemma to get

20 = 14 x 1 + 6

We consider the new divisor 14 and the new remainder 6,and apply the division lemma to get

14 = 6 x 2 + 2

We consider the new divisor 6 and the new remainder 2,and apply the division lemma to get

6 = 2 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 558 and 874 is 2

Notice that 2 = HCF(6,2) = HCF(14,6) = HCF(20,14) = HCF(74,20) = HCF(242,74) = HCF(316,242) = HCF(558,316) = HCF(874,558) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 558, 874 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 558, 874?

Answer: HCF of 558, 874 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 558, 874 using Euclid's Algorithm?

Answer: For arbitrary numbers 558, 874 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.