Highest Common Factor of 558, 893, 149, 898 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 558, 893, 149, 898 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 558, 893, 149, 898 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 558, 893, 149, 898 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 558, 893, 149, 898 is 1.

HCF(558, 893, 149, 898) = 1

HCF of 558, 893, 149, 898 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 558, 893, 149, 898 is 1.

Highest Common Factor of 558,893,149,898 using Euclid's algorithm

Highest Common Factor of 558,893,149,898 is 1

Step 1: Since 893 > 558, we apply the division lemma to 893 and 558, to get

893 = 558 x 1 + 335

Step 2: Since the reminder 558 ≠ 0, we apply division lemma to 335 and 558, to get

558 = 335 x 1 + 223

Step 3: We consider the new divisor 335 and the new remainder 223, and apply the division lemma to get

335 = 223 x 1 + 112

We consider the new divisor 223 and the new remainder 112,and apply the division lemma to get

223 = 112 x 1 + 111

We consider the new divisor 112 and the new remainder 111,and apply the division lemma to get

112 = 111 x 1 + 1

We consider the new divisor 111 and the new remainder 1,and apply the division lemma to get

111 = 1 x 111 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 558 and 893 is 1

Notice that 1 = HCF(111,1) = HCF(112,111) = HCF(223,112) = HCF(335,223) = HCF(558,335) = HCF(893,558) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 149 > 1, we apply the division lemma to 149 and 1, to get

149 = 1 x 149 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 149 is 1

Notice that 1 = HCF(149,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 898 > 1, we apply the division lemma to 898 and 1, to get

898 = 1 x 898 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 898 is 1

Notice that 1 = HCF(898,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 558, 893, 149, 898 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 558, 893, 149, 898?

Answer: HCF of 558, 893, 149, 898 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 558, 893, 149, 898 using Euclid's Algorithm?

Answer: For arbitrary numbers 558, 893, 149, 898 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.