Highest Common Factor of 5583, 3835 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 5583, 3835 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 5583, 3835 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 5583, 3835 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 5583, 3835 is 1.

HCF(5583, 3835) = 1

HCF of 5583, 3835 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 5583, 3835 is 1.

Highest Common Factor of 5583,3835 using Euclid's algorithm

Highest Common Factor of 5583,3835 is 1

Step 1: Since 5583 > 3835, we apply the division lemma to 5583 and 3835, to get

5583 = 3835 x 1 + 1748

Step 2: Since the reminder 3835 ≠ 0, we apply division lemma to 1748 and 3835, to get

3835 = 1748 x 2 + 339

Step 3: We consider the new divisor 1748 and the new remainder 339, and apply the division lemma to get

1748 = 339 x 5 + 53

We consider the new divisor 339 and the new remainder 53,and apply the division lemma to get

339 = 53 x 6 + 21

We consider the new divisor 53 and the new remainder 21,and apply the division lemma to get

53 = 21 x 2 + 11

We consider the new divisor 21 and the new remainder 11,and apply the division lemma to get

21 = 11 x 1 + 10

We consider the new divisor 11 and the new remainder 10,and apply the division lemma to get

11 = 10 x 1 + 1

We consider the new divisor 10 and the new remainder 1,and apply the division lemma to get

10 = 1 x 10 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5583 and 3835 is 1

Notice that 1 = HCF(10,1) = HCF(11,10) = HCF(21,11) = HCF(53,21) = HCF(339,53) = HCF(1748,339) = HCF(3835,1748) = HCF(5583,3835) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 5583, 3835 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 5583, 3835?

Answer: HCF of 5583, 3835 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 5583, 3835 using Euclid's Algorithm?

Answer: For arbitrary numbers 5583, 3835 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.