Highest Common Factor of 559, 922, 274 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 559, 922, 274 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 559, 922, 274 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 559, 922, 274 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 559, 922, 274 is 1.

HCF(559, 922, 274) = 1

HCF of 559, 922, 274 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 559, 922, 274 is 1.

Highest Common Factor of 559,922,274 using Euclid's algorithm

Highest Common Factor of 559,922,274 is 1

Step 1: Since 922 > 559, we apply the division lemma to 922 and 559, to get

922 = 559 x 1 + 363

Step 2: Since the reminder 559 ≠ 0, we apply division lemma to 363 and 559, to get

559 = 363 x 1 + 196

Step 3: We consider the new divisor 363 and the new remainder 196, and apply the division lemma to get

363 = 196 x 1 + 167

We consider the new divisor 196 and the new remainder 167,and apply the division lemma to get

196 = 167 x 1 + 29

We consider the new divisor 167 and the new remainder 29,and apply the division lemma to get

167 = 29 x 5 + 22

We consider the new divisor 29 and the new remainder 22,and apply the division lemma to get

29 = 22 x 1 + 7

We consider the new divisor 22 and the new remainder 7,and apply the division lemma to get

22 = 7 x 3 + 1

We consider the new divisor 7 and the new remainder 1,and apply the division lemma to get

7 = 1 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 559 and 922 is 1

Notice that 1 = HCF(7,1) = HCF(22,7) = HCF(29,22) = HCF(167,29) = HCF(196,167) = HCF(363,196) = HCF(559,363) = HCF(922,559) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 274 > 1, we apply the division lemma to 274 and 1, to get

274 = 1 x 274 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 274 is 1

Notice that 1 = HCF(274,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 559, 922, 274 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 559, 922, 274?

Answer: HCF of 559, 922, 274 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 559, 922, 274 using Euclid's Algorithm?

Answer: For arbitrary numbers 559, 922, 274 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.