Highest Common Factor of 561, 794, 569 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 561, 794, 569 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 561, 794, 569 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 561, 794, 569 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 561, 794, 569 is 1.

HCF(561, 794, 569) = 1

HCF of 561, 794, 569 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 561, 794, 569 is 1.

Highest Common Factor of 561,794,569 using Euclid's algorithm

Highest Common Factor of 561,794,569 is 1

Step 1: Since 794 > 561, we apply the division lemma to 794 and 561, to get

794 = 561 x 1 + 233

Step 2: Since the reminder 561 ≠ 0, we apply division lemma to 233 and 561, to get

561 = 233 x 2 + 95

Step 3: We consider the new divisor 233 and the new remainder 95, and apply the division lemma to get

233 = 95 x 2 + 43

We consider the new divisor 95 and the new remainder 43,and apply the division lemma to get

95 = 43 x 2 + 9

We consider the new divisor 43 and the new remainder 9,and apply the division lemma to get

43 = 9 x 4 + 7

We consider the new divisor 9 and the new remainder 7,and apply the division lemma to get

9 = 7 x 1 + 2

We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get

7 = 2 x 3 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 561 and 794 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(9,7) = HCF(43,9) = HCF(95,43) = HCF(233,95) = HCF(561,233) = HCF(794,561) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 569 > 1, we apply the division lemma to 569 and 1, to get

569 = 1 x 569 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 569 is 1

Notice that 1 = HCF(569,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 561, 794, 569 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 561, 794, 569?

Answer: HCF of 561, 794, 569 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 561, 794, 569 using Euclid's Algorithm?

Answer: For arbitrary numbers 561, 794, 569 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.